
Novell International
Cryptographic Infrastructure

(NICI)

NICI 2.7.1 Cryptographic Library
FIPS 140-2 Level 2

Security Policy
Version 1.5

March 23, 2007

Novell Inc.
Copyright 2007 Novell, Inc. All Rights Reserved

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

Legal Notices

COPYRIGHT © 2007, Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the
U.S. or Canada.

This document may be copied freely without the author’s permission provided the document is copied in it’s entirety without any
modification.

U.S. Patent Nos. 4,555,775; 5,157,663; 5,349,642; 5,455,932; 5,553,139; 5,553,143; 5,594,863; 5,608,903;
5,633,931; 5,652,854; 5,671,414; 5,677,851; 5,692,129; 5,758,069; 5,758,344; 5,761,499; 5,781,724; 5,781,733;
5,784,560; 5,787,439; 5,818,936; 5,828,882; 5,832,275; 5,832,483; 5,832,487; 5,859,978; 5,870,739; 5,873,079;
5,878,415; 5,884,304; 5,893,118; 5,903,650; 5,905,860; 5,913,025; 5,915,253; 5,925,108; 5,933,503; 5,933,826;
5,946,467; 5,956,718; 5,974,474. U.S. and Foreign Patents Pending.

Novell, Inc.
1800 South Novell Place
Provo, Utah 84606
U.S.A.

www.novell.com
Novell Trademarks

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 2

http://www.novell.com/

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

Table of Contents
1 Introduction... 4
2 Security Policy.. 4

2.1 Cryptographic Modules.. 4
2.2 Module Interfaces.. 6

2.2.1 Data Input/Output Interface.. 6
2.2.2 Command/Status Interface.. 6

2.3 Roles and Services.. 6
2.3.1 User Role .. 6
2.3.2 Crypto-Officer Role ... 7

2.4 Finite State Machine Model... 7
2.5 Physical Security.. 7
2.6 Cryptographic Key Management... 7

2.6.1 FIPS Approved Key Generation... 7
2.6.2 Key Distribution ... 7

2.6.2.1 NICI Wrapped Keys .. 7
2.6.2.2 NICI Session Keys .. 9
2.6.2.3 Key Wrapping Attributes ... 9

2.6.3 Key Entry and Output .. 9
2.6.3.1 Password-Based Encryption (PBE) Wrapped Keys ..10
2.6.3.2 Key Injection and Extraction ..10
2.6.3.3 Protocol Support ... 10

2.6.4 Key Storage .. 10
2.6.4.1 Key Storage Keys ..10

2.6.5 Key Destruction ... 10
2.7 Cryptographic Algorithms.. 12
2.8 EMI/EMC.. 12
2.9 Self-Tests... 13

2.9.1 Startup Self-Tests ... 13
2.9.1.1 Cryptographic Algorithms Test... 13
2.9.1.2 Software/Firmware Test... 13
2.9.1.3 Critical Functions Test ... 13

2.9.2 Conditional Self Tests ... 13
2.9.2.1 Pair-Wise Consistency Tests (for public/private key pairs.) ... 13
2.9.2.2 Continuous Random Number Test ..13

3 Installation Guidance.. 14
3.1 Crypto-Officer Guidance.. 14

3.1.1 FIPS 140-2 Level 2 Installation Requirements ... 14
3.1.2 Evaluated Configuration... 14

3.2 User Guidance... 14
APPENDIX A – CCS API Definitions... 15

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 3

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

1 Introduction
The Novell International Cryptographic Infrastructure (NICI) consists of a set of components that have been
implemented on a number of different platforms.

This document describes the Security Policy for NICI version 2.7.1 to meet the FIPS 140-2 Level 2 requirements as
it has been implemented for the following platforms:

• SuSE Linux Enterprise Server v8 with Service Pack 3 on IBM eServer 325

• Trusted Solaris v8 on Sun Sunblade 100

• Windows 2000 Professional, Server with SP3 and Q326886 on Dell Optiplex GX400

2 Security Policy
The Novell NICI 2.7.1 Cryptography Library Security Policy, conforms to FIPS 140-2 Level 2 as shown in the Table
1.

FIPS140-2 TEST CATEGORY LEVEL
Cryptographic Module
Specification 2

Cryptographic Module Ports and
Interfaces 2
Roles, Services, and
Authentication 2

Finite State Model 2
Physical Security N/A
Operational Environment 2
Cryptographic Key Management 2
EMI/EMC 2
Self Tests 2
Design Assurance 2
Mitigation of Other Attacks N/A

Table 1. FIPS 140-2 Test Category Levels

2.1 Cryptographic Modules
NICI consists of a set of software libraries designed to run on a wide variety of modern operating systems and
hardware platforms. In this configuration, NICI is a shared library (.so or dll). In FIPS 140-2 terms, NICI consists of a
set of hardware, software, and firmware that make up a "multi-chip standalone module."

The module consists of the following components:

A C2 TCSEC equivalent system consisting of a hardware platform and operating system software. The test system
was an EAL4 evaluated Operating System configuration running on the platforms specified above. Configuration
details are listed in section 3 (Implementation Guidance) of this document.

NICI 2.7.1 for Trusted Solaris, SuSE Linux Enterprise Server, and Windows 2000 Server consists of a matched
upper library, which is linked to the application, and a lower library that is installed on the system.

Figure 1. Software block diagram

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 4

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

The physical cryptographic boundary is defined by the server hardware. The logical cryptographic boundary
encompasses the dynamic linked library (ccsw32.dll) in Windows systems and the shared object (libccs2.so.2.7.1)
on Unix systems.

Since NICI must be able to store at least one permanent key, the Key Storage Key, in order to be able to securely
wrap and unwrap other keys, that key is stored in a DES encrypted form per user, encrypted under an embedded
key encryption key, protected by the common criteria evaluated operating system's mechanisms. Stored NICI keys
can be zeroized by reformatting the computer’s hard drives.

MABLE is the Module Authentication and Binding Library Extensions (patent issued) technology used to
authenticate NICI to an application and to provide ongoing binding between an application and NICI as if the
application is statically linked to NICI. Upper MABLE is statically linked to an application and contains the challenge
generation, certificate verification, and ongoing binding mechanism functions. Lower MABLE is statically linked to
NICI and contains the response-to-challenge generation, signature creation, and ongoing binding mechanism
functions.

Figure 2. Hardware Block Diagram

All NICI software including executable and data files is protected by the Operating System’s access control

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 5

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

mechanisms covered by its DAC (Discretionary Access Controls) policy and enforced by TSF (TOE Security
Function) installed in accordance with its CC evaluation. The shared object module is protected by file system
access controls from unauthorized tampering. The Operating System’s file, memory, and process access controls
enforced by TSF protect per user NICI configuration files and run-time memory image from tampering and access
by other users. Similarly, the NICI configuration file is protected by the operating system’s access control
mechanisms.

NICI 2.7.1 as evaluated requires the Operating System installed in its CC Evaluated evaluated configuration. See
section 3, “Installation Guidance” for further information.

2.2 Module Interfaces
FIPS 140-2 defines a cryptographic boundary, and as well as interfaces through which information is allowed to
enter and leave the cryptographic boundary. Defining such interfaces is normally straightforward for developers of
hardware modules, but developers of software modules are faced with the task of choosing an appropriate set of
interface definitions.

2.2.1 Data Input/Output Interface
FIPS 140-2 requires the definition of Data Input/Output (I/O) and Command/Status interfaces. NICI defines these
interfaces through the Controlled Cryptographic Services (CCS) API. The API provides the means to Input and
output data, and to determine the status of the module. The Data Input/Output and the Status interfaces are active
only during the User and Crypto-Officer States.

2.2.2 Command/Status Interface
The FIPS 140-2 Control interface is used to initiate the NICI Module. It is activated by the operating system when an
application program asks the operating system to attach NICI and causes it to commence operation. It may also be
activated when the operating system commands NICI to shut down. Otherwise, it is active only during the User and
Crypto Officer States, if and when commands are issued via the API set.

NICI has the following logical interfaces: data in, data out, control-in, and status out. These interfaces are supported
by the API set.

2.3 Roles and Services
Novell NICI 2.7.1 is FIPS 140-2 Level 2 compliant for Roles and Services. NICI also supports concurrent operators;
the CC evaluated operating system's security mechanisms maintain the separation of the roles and services.

Operation User Role Crypto Officer Role

Install NICI X
Upgrade NICI X
Configure NICI X
Zeroize Keys X

Encrypt/Decrypt X X
Generate Keys and Random Data X X

Sign/Verify X X

2.3.1 User Role
A “User” is an application program, running as a single or multiple process (perhaps multi-threaded), which has
been linked with the Novell NICI interface library. This version of NICI supports multiple processes with different
user identities with separation between such multiple instances relying on the access mechanisms provided by the
operating system. Each instance of NICI has an identity and a separate memory space with access to a unique set
of key materials. Authenticating to the operating system authenticates the application to NICI; as an application
cannot use NICI unless it authenticates to the operating system first. After authentication to the User state, the User

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 6

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

program is able to perform Cryptographic operations via the API set defined in the Controlled Cryptography Services
Software Development Specification (CCS) document.

NICI relies on the authentication mechanism provided by the operating system on which it is being run. Each of the
operating systems on which NICI has been validated should be installed in their CC evaluated configuration (see the
Crypto-Officer Guidance). This means the authentication mechanism requires a minimum password length of eight
alphanumeric characters, providing at a minimum a 1 in 10,000,000 chance of successfully attacking the password.
The mechanism strength applies to both the user and crypto-officer roles.

NICI maintains a set of persistent unique keys per user with independent seeding and key generation capability per
process. The operating system maintains the separation of such set of keys in a multi-user (multiple operator)
setting. Each operator may potentially have more than one process. Each operator is associated with a unique User
ID. All processes with the same User ID have access to a unique set of keys.

2.3.2 Crypto-Officer Role
A single Crypto-Officer role is supported in NICI, the NICI Administrator, as the “root” defined on the Operating
System. Authenticating to the Operating System assigns the Crypto-Officer, or the NICI Administrator, role to the
“root” user. The purpose of the NICI Administrator is to setup, configure, reconfigure and uninstall the NICI software.
In addition, the Crypto-Officer can zeroize the Key Storage Keys of the original NICI instance if required, by either
rebooting the box or restarting the application to reload the library. The NICI Administrator is also the security
administrator as defined by the Operating System.

2.4 Finite State Machine Model
NICI has an embedded finite state machine that is compliant with the FIPS 140-2 specification. The finite state
machine is described fully in a separate document that is submitted during the FIPS 140-2 level 2 validation
process.

2.5 Physical Security
This is not applicable to NICI as it is a software module.

2.6 Cryptographic Key Management
NICI provides extensive cryptographic key management services and facilities, and is unique in addressing these
requirements from a cross-platform, general-purpose networking perspective. Compatible key management is
provided for all cryptographic modules, on all supported platforms, and for all algorithms, including secret key
(symmetric) and public key (asymmetric) algorithms. Secret keys and private key are protected from unauthorized
disclosure, modification, and substitution. Public keys are protected against unauthorized modification and
substitution. NICI implements all key management functions, enforces key use policies, and provides algorithm
management services to applications.

NICI key use policies are comprised of key usage flags (encrypt, wrap, sign, etc.), key types (TDES, RSA, AES,
etc.), and algorithms (RSA, TDES, DSA, etc.).

A key management key must have wrap and key management encrypt key usage flags set in order to wrap keys.
Key type must also match the algorithm used with a particular key. For instance, a TDES key can not be used with
the AES algorithm. These combined constitute NICI key use policies.

2.6.1 FIPS Approved Key Generation
The G function in the pseudo-random generator described in FIPS 186-2 is constructed using the SHA-1 hash
function with b=512. (see http://csrc.nist.gov/fips/fips186-2.pdf).

2.6.2 Key Distribution
NICI key distribution capabilities comply with FIPS 171 options 1 (key exchange role), 4 (MAC), 5 (key and IV
generation), 6 (key generation techniques), and 14 (send IV).

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 7

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

2.6.2.1 NICI Wrapped Keys
Wrapping of keys is the mechanism that NICI provides for applications to obtain the value of secret or private keys
for storage outside of NICI or for distribution among different instances of NICI. Various keys are provided by NICI
for key wrapping. The same key (or corresponding private key of the same key pair) must subsequently be used to
unwrap a wrapped key in order for it to be reloaded into NICI.

The key-management keys discussed below are generated with attributes conforming to the key management
usage policies. Those that are described below as being persistent per user are stored securely by NICI as an
integral part of its infrastructure to persist across system shutdowns and restarts. The persistent NICI key
management keys are TDES or RSA keys.

All TDES and HMAC-SHA1 keys are generated and used in FIPS mode. NICI uses HMAC-SHA1 to provide integrity
of persistent keys in FIPS mode. NICI uses RSA digital signatures to sign certificates and to encrypt keys in FIPS
mode. NICI does not use RSA for data encryption in FIPS mode. No means is provided for unauthorized
applications to obtain any of the secret or private key-management keys for storage or distribution outside of NICI.

Key-wrapping keys may also be generated at the request of applications, which are then responsible for their secure
storage (for example, by wrapping with any of the keys described in this section).

NICI keys are listed in the following table. SENSITIVE is an attribute of a key set at key generation time, and
EXTRACT is a key usage flag. They are enforced by the NICI key use policies. Other NICI key attributes and key
usage flags are described in the CCS Software Development Specification document.

Key Name Key Type / Algorithm Key Usages Description Storage and Zeroization
STORAGE Triple-DES WRAP, UNWRAP,

SENSITIVE
Symmetric key wrapping key,
generated and maintained by
NICI. FIPS approved.

Stored on disk in the xmgrcfg
file in the /var/opt/novell/nici
directory. It is stored in an
obfuscated format, but for
FIPS purposes it is stored in
plain text.

SESSION DES / Triple-DES WRAP, UNWRAP,
SENSITIVE

Symmetric key-wrapping key
per connection between a
client and server. Generated
by NICI, present while the
connection is active. FIPS
approved.

Stored in the memory.
Zeroized when the application
closes the context associated
with the key.

CA RSA SIGN, VERIFY,
SENSITIVE

NICI’s machine-unique CA
key-pair, 1024 bits.
Generated and maintained by
NICI. Not FIPS approved.

It stored in the xmgrcfg file in
the /var/opt/novell/nici/
directory. It is stored in an
obfuscated format, but for
FIPS purposes it is stored in
plain text.

PARTITION DES / Triple-DES WRAP, UNWRAP,
SENSITIVE

Security Domain Keys, key
wrapping purposes only.
Generated and maintained by
NICI. FIPS approved.

Stored on disk in the
nicisdi.key file in the
/var/opt/novell/nici directory.
This is encrypted with the
Storage key. Zeroized when
the storage key is deleted or
lost .

FOREIGN Any EXTRACT and any,
but not SENSITIVE

Use of these keys are not
FIPS 140-2 approved.
Generator unknown, maybe
NICI.

Could be stored in memory or
disk depending on the
application.

XKEY Random Value Used for seeding the
FIPS approved
PRNGs.

Generated by NICI using an
entropy collection method.
Only use as a seed value for
random number generation.

Stored in memory.

Other DES, Triple-DES, DSA,
FIPS-RSA (signature),
FIPS-RSA (key
distribution), HMAC-
SHA1 (signature)

Any, but not
EXTRACT

These keys are generated by
NICI using a FIPS approved
algorithm. FIPS approved.

Stored in memory.

Other RSA (encryption) Any, but not NICI-generated, but not FIPS Stored in memory

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 8

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

EXTRACT approved.
Authentication
Data
(password)

Alpha-numeric
password

Used by operating
system for user
authentication

Externally generated
passwords for operating
system authentication.

Stored on disk in obfuscated
format and controlled by
operating system. Stored in
plaintext for FIPS purposes.

It is the application’s responsibility to use the FIPS approved APIs, algorithms, and keys to maintain the FIPS 140-2
mode of operation. Use of any one of the non-FIPS algorithms or non-FIPS approved APIs would invalidate the
FIPS mode of operation.

2.6.2.2 NICI Session Keys
Starting with version 2.7.0, NICI operates in a server mode. It supports NICI operating in a client mode from any
previous versions. A unique session wrapping key is shared between a NICI client instance and a NICI server
instance. NICI Session wrapping keys are intended only for wrapping of keys for distribution between clients and
servers, or between two servers. Each session wrapping key is a transient symmetric key. Session wrapping keys
can not be extracted in encrypted or unencrypted form for any kind of persistent storage outside of NICI; they are in-
memory transient keys useable for key wrapping and unwrapping during the lifetime of a session as defined by the
application (typically a network connection to a server/client). The terms server mode and client mode refer to the
mode in which a user application operates and does not have any affect on the module's operation.

2.6.2.3 Key Wrapping Attributes
Key wrapping is a secure way of transferring keys in and out of NICI. It has confidentiality, a mechanism for the key
value and an integrity mechanism for all attributes.

A wrapped key includes all attributes of a key, such as key usage flags, key ID, and key value. The key value
attribute is encrypted in the wrapping key to provide confidentiality. A SHA1 hash is computed over the entire
wrapped key (attributes and the encrypted key value), and is encrypted by the wrapping key to generate a MAC.
This provides integrity of the wrapped key. The user specifies the encryption algorithm (wrapping algorithm) and the
wrapping key.

NICI public-key key-wrapping keys may be stored or transmitted outside of NICI in X.509-compliant certificates for
which NICI itself is the certification authority. These keys may not be used as server or end-user keys.

Keys that are wrapped using a public key cannot have their authenticity guaranteed without some additional
mechanism that makes use of either a secret or private key whose value is not exposed outside of NICI. For
example, a digital signature would serve this purpose. Such signatures are not required as part of the wrapping
mechanism because that would excessively limit the flexibility and use of the key distribution mechanism in NICI, as
well as the possible performance impact.

At the discretion of an application requesting the wrapping, the integrity check, such as HMAC-SHA1 or a DSA
signature, on the wrapped key’s attributes may optionally be calculated using a key management key, independent
of the wrapping key that the application chooses to protect sensitive key attributes. Otherwise, these attributes must
be considered only advisory in nature.

To maintain the integrity of NICI’s own protection mechanisms, keys whose authenticity is not assured by one of the
mechanisms described here cannot be used to wrap internal NICI keys.

2.6.3 Key Entry and Output
NICI does not possess a manual key entry method; all keys are entered electronically. Aside from the Crypto-
Officer's role in distributing configuration data (used under the control of the Crypto Operator at installation time), all
keys are entered under the User's control via the API interface.

Typical key entry to NICI is done via key unwrapping, i.e., by decrypting the key value, and verifying the integrity of
the attributes associated with the key. NICI maintains a set of key wrapping keys for this purpose. See Key Storage
Keys section for details.

There should seldom, if ever, be a requirement for a User to directly enter into or output from NICI a raw, plaintext
private or secret key, except for compatibility with legacy systems.

There are two exceptions to this general rule. The first is for compatibility with other systems, where the human user

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 9

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

has a personal cryptographic key and no way to securely store it except for a password-based encryption
mechanism.

The second is not really a key injection or extraction per se, but rather a protocol-dependent key distribution
mechanism. The integrity and the confidentiality of such keys are provided by the protocol.

Raw access to all keys are controlled by three independent controls in NICI: 1) Key's usage must have EXTRACT
bit set, 2) Key's usage must not have the SENSITIVE attribute set, and 3) The user must call the CCS_ExtractKey
API. An application does not have access to plaintext secret keys unless it calls the CCS_ExtractKey API.

2.6.3.1 Password-Based Encryption (PBE) Wrapped Keys
Password-Based Encryption (PBE) is frequently required when interfacing with other, non-NICI systems such as
browsers, S/MIME e-mail clients, and certain authentication methods. Since many of these applications are
software-based, and manyof them run on non-trusted platforms such as Windows 95/98, the only economically
feasible way of protecting those keys is to use a Password-Based Encryption mechanism. The password-based
encryption API set is not FIPS 140-2 approved.

NICI implements the PKCS #12 recommendation for password-based encryption and decryption. With this scheme,
the key to be protected is encrypted in a randomly generated intermediate key of suitable strength (depending on
import requirements and algorithm availability). Hashing the intermediate key is created by hashing an arbitrarily
long password or passphrase entered by the user, and then truncating the key as required to meet the key
management policy constraints. PKCS#12 builds into this scheme a deliberate slow-down mechanism that requires
hashing and rehashing the password many, many times before decrypting the intermediate key. This is to provide
some level of protection against an off-line password guessing attack. The time taken is small by human standards
(a second or less) but the amount of computer time required to do an exhaustive search would be very large. As
noted above, use of the password-based encryption API set is not FIPS 140-2 approved.

2.6.3.2 Key Injection and Extraction
The NICI CCS API documentation defines key injection and extraction functions,, but their use would invalidate the
FIPS 140-2 mode of operation.

2.6.3.3 Protocol Support
At the present time, protocol support for unwrapping keys that have been wrapped in a User's private key has been
provided for SSL/TLS and IPSEC. Use of these APIs is not approved for the FIPS 140-2 mode.

2.6.4 Key Storage
When keys have been unwrapped within NICI (that is, within the confines of the NICI cryptographic module
boundaries), they are kept in the clear(in plaintext form), in order to minimize the latency and overhead when using
them. Access to the memory managed by the CC evaluated operating system is deemed adequate for FIPS 140-2
level 2 security.

2.6.4.1 Key Storage Keys
As mentioned previously, per-user Key Storage Keys are written to the operating system supported storage, which
is protected against unauthorized access by the operating system's mechanisms.

Whenever a Key Storage Key is used to wrap another key for storage, the Key ID of that Key Storage Key is
included in the wrapped key. In this manner, any previously generated, wrapped, and stored keys will be accessible,
even if a new Key Storage Keys is generated later. The Key ID contained in the wrapped key format also includes a
unique ID to that particular machine and process, in order to help ensure that the correct Key Storage Key is being
used to unwrap a particular key. At a minimum, this protects against the possibility that the wrapped key has been
moved, migrated, or merged onto a new system, perhaps along with the data it protects, but somehow the correct
Key Storage Key has been left behind. The integrity check in wrapped keys will catch this.

Should some form of compromise of the Key Storage Keys file occur, that requires violation of the CC operating
system's security mechanisms, all previously generated and wrapped keys on that server would potentially be
compromised as well. This is unavoidable in a software-based key management system. However, because of the

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 10

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

entropy added at NICI instantiation time, the attacker would not gain access to the new keys, except by re-attacking
the Key Storage Key file, which effectively requires circumvention of the CC evaluation of the operating system.

2.6.5 Key Destruction
When the particular NICI context associated with the usage of a set of keys is closed, all keys associated with that
context within NICI are zeroized and destroyed in memory. When NICI itself is closed within a given process,
assuming it is closed gracefully and not by a system crash or power outage, all keys in all contexts are zeroized.

The destruction of the current and all previous Key Storage Keys in the Key Storage Keys file should be an
extremely rare event, since it would effectively make it impossible to recover any previously wrapped keys. The only
time this would be likely to occur would be if a particular machine were to be decommissioned and taken out of
service, presumably after all of the information had been migrated to another machine.

Since the ability to zeroize all keys might make possible a very serious Denial of Service attack, NICI does not
provide a specific tool or function to cause this to occur. Instead, in this event it is the Crypto Operator's
responsibility to perform a complete low-level hardware formatting and reinitialization of the hard disk, thoroughly
scrubbing the disk to make certain there is no readable residue.

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 11

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

2.7 Cryptographic Algorithms
NICI 2.7.1 supports the following FIPS approved algorithms:

Algorithm Key Size(s) Algorithm Certificate #

AES (FIPS 197) 128 bits, 256 bits 432

TDES (FIPS 46-3 and 81) 112 and 156-bits 461

SHA (SHA-1, SHA 192, SHA 256,
SHA 384) (FIPS 180-1)

128, 256, 384,512 bit hashes 502

RSA (PKCS#1) 1024, 2048, 4096 bits 163

DSA (FIPS 186-2) 1024 bits 179

HMAC SHA-1 (FIPS 198) Keyed Hash Algorithm 204

Non-FIPS approved algorithms that also are supported include:
1. Diffie-Hellman (PKCS#3)
2. ECDSA
3. EC DH (160-384bits)
4. DES
5. MD2 (RFC 1319)
6. MD4 (RFC 1320)
7. MD5 (RFC 1321)
8. HMAC-MD5 (RFC 2104)
9. RC2 (RFC 2268)
10. RC4
11. RC5 (RFC 2040)
12. CAST128 (RFC 2144)
13. Password Based Encryption, six algorithms (PKCS#12)
14. UNIX* Crypt
15. LMdigest (CIFS)
16. TLS-KeyExchange-RSASign
17. X9.62 RNG
18. NetWarePassword.(Novell)

The Diffie-Hellman algorithm, though not FIPS approved is allowed in a FIPS mode of operation.

The following EC key sizes are supported but not tested for FIPS.

ECDSA (FIPS 186-2) Special Curves specified in FIPS 186-2 for the
key sizes and Curves defined in ANSI X9.62 –
163, 176, 191, 192, 208, 224, 233, 239, 256,
272, 283, 304, 359, 368, 384, 409, 521, and 571
bits

When only FIPS approved algorithms are used, NICI can be said to be functioning in FIPS mode. If any non-FIPS
approved algorithm (numbers 2 and 4-18) is used, NICI is running in non-FIPS mode. It is the application
programmer’s responsibility to enforce FIPS and Non-FIPS modes of operation.

2.8 EMI/EMC
This is not applicable to NICI as it is a software module.

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 12

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

2.9 Self-Tests
NICI conforms to the FIPS 140-2 Level 2 requirements for self-test.

The required start-up self-tests are performed every time the NICI is started by the operating system, prior to
transitioning to the User state. If the self-tests do not run correctly, NICI will not start, and an error indication will be
returned via the API.

2.9.1 Startup Self-Tests
NICI satisfies the requirements for FIPS 140-2 Level 2 for Power-up Self-Tests.

2.9.1.1 Cryptographic Algorithms Test
Known answer tests are performed for RSA, DSA, ECDSA, TDES, AES, HMAC-SHA-1 and PRNG implementation
upon startup. Pair-wise consistency tests are performed for RSA, DSA and ECDSA upon startup.

2.9.1.2 Software/Firmware Test
NICI performs a software integrity self check at startup.

On Windows and Unix like platforms, NICI complies with FIPS 140-2 by storing a DAC for the NICI shared library
when the module is installed. This DAC is stored, in the configuration file on unix like systems and in the registry on
windows,each of which is under the control of the Crypto-Officer and protected operating system's file system
permissions. The DAC for the shared library is calculated at initialization and compared with the stored version.
NICI fails initialization if the DAC does not match. NICI is using HMAC-SHA1 to compute the DAC.

In all these cases, if any check fails NICI will give out an error message and will become unusable.

2.9.1.3 Critical Functions Test
The nature and design of NICI precludes successful completion of the cryptographic algorithm tests and the
Software/Firmware tests without all critical functions operating properly. Successful completion of these tests is
sufficient to indicate that all critical functions are operating properly.

2.9.2 Conditional Self Tests
The following tests are performed as specified for each test:

2.9.2.1 Pair-Wise Consistency Tests (for public/private key pairs.)
When a public/private key pair is generated the key pair is tested for pair-wise consistency. The public key is used
to encrypt a plaintext value and checked to ensure that an identity mapping did not occur, and then the private key is
used to decrypt that value and the value compared to the original. If the values are not identical, the tests fails. If the
keys are to be used only for the calculation of a signature, then the consistency is tested by the calculation and
verification of a signature. These tests are applied to RSA, DSA and ECDSA keys.

2.9.2.2 Continuous Random Number Test
The continuous random number generator tests specified in FIPS PUB 140-2. Security Requirements for
Cryptographic Modules, Section 4.11.2 (see http://www.itl.nist.gov/fipspubs/fip140-2.htm or
http://csrc.nist.gov/fips/fips140-2.pdf), are applied to the operating specific random entropy generator routines, prior
to their being used to generate a cryptographic key, seed, or cryptographic random number. They are applied
independently, both before and after any cryptographic processing to add entropy or whitening. This will test both
the entropy generator and the results of the key generation function, etc.

3 Installation Guidance

3.1 Crypto-Officer Guidance
The following steps should be followed by the Crypto-Officer to ensure that NICI is installed in a FIPS 140-2 Level 2 compliant

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 13

http://csrc.nist.gov/fips/fips140-2.pdf
http://www.itl.nist.gov/fipspubs/fip140-2.htm

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

mode:
– The system supported installation mechanism for installing NICI should be obtained from Novell's web site.

(http://www.novell.com/)
– The operating system should be installed and set up as per the guidelines below.
– NICI should always be installed using the system supported installation mechanism. Manually copying the configuration files

and libraries into their respective locations does not ensure that the permissions on the files are set properly and should not
be done.

3.1.1 FIPS 140-2 Level 2 Installation Requirements
For NICI version 2.7.1 for to be compliant with the FIPS 140-2 Level 2 specification the following requirements must be met.

(1) NICI must be installed on one of the CC evaluated computing platforms listed in section 1 according to the
manufacturers Trusted Facilities Manual.

(2) NICI must be installed using the standard NICI 2.7.1 Installation Program to insure that file permissions are
correctly set.

3.1.2 Evaluated Configuration
NICI 2.7.1 was evaluated in the following configuration

(1) A CC evaluated computing platform consisting of a generic hardware with the CC evaluated Operating System
installed as specified by its evaluation.

– The instructions for Solaris can be found in the document at
(http://www.commoncriteriaportal.org/public/files/epfiles/TSolaris8_Issue3.1.pdf)

– For SuSE Linux Enteprise Server 8, the document is
(http://www.bsi.bund.de/zertifiz/zert/reporte/0234a.pdf)

– For Microsoft Windows 2000 Server the instructions are
(http://www.microsoft.com/technet/security/prodtech/windows2000/w2kccscg/default.mspx)

(2) NICI was installed using the standard installation program.

3.2 User Guidance

The following steps should be followed by the User:
– To ensure that NICI operates in an approved mode of operation, the user should not use non-FIPS approved algorithms.

Novell recommends the following instructions be followed to ensure smooth operation:

– The Crypto-Officer must ensure that the operating system is properly installed with the latest security patches.
– Once used NICI's keys should not be deleted
– Configuration files, license key and archive files should not be updated out-of-band. This makes NICI regenerate user keys,

thus making NICI unusable.

APPENDIX A – CCS API Definitions
For complete descriptions, please refer to the Controlled Cryptography Services Development Specifications
document available from Novell.

API Description
CCS_Init Initializes the CCS library
CCS_Shutdown Closes the CCS library
CCS_GetInfo Return information about the CCS interface
CCS_GetPolicyInfo Determines the policy constraints on key attributes for a given key type and usage
CCS_GetKMStrength Returns the key management strength level
CCS_GetRandom Returns a random number

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 14

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

CCS_GetAlgorithmInfo Obtain information about a specific algorithm.
CCS_GetAlgorithmList Obtain information about the algorithms available in the system.
CCS_GetMoreAlgorithmInfo Obtain variable-length information about an algorithm.
CCS_CreateContext Create a cryptography context.
CCS_DestroyContext Destroy a cryptography context.
CCS_DestroyObject Destroy a CCS object.
CCS_FindObjectsInit Initialize a search for objects that match a template.
CCS_FindObjects Continue a search for objects that match a template.
CCS_GetAttributeValue Obtain the value of one or more object attributes.
CCS_SetAttributeValue Modify the values of one or more object attributes.
CCS_DataEncryptInit Initialize a data encryption operation.
CCS_Encrypt Encrypt single-part data.
CCS_EncryptUpdate Continue a multi-part encryption operation.
CCS_EncryptFinal Finish a multi-part encryption operation.
CCS_EncryptRestart Reinitialize an encryption operation.
CCS_DataDecryptInit Initialize a data decryption operation.
CCS_Decrypt Decrypt encrypted data in a single part.
CCS_DecryptUpdate Continue a multi-part decryption operation.
CCS_DecryptFinal Finish a multi-part decryption operation.
CCS_DecryptRestart Reinitialize a decryption operation.
CCS_SetNewIV Sets a new IV
CCS_Obfuscate Obfuscates an input string.
CCS_DeObfuscate De-obfuscates an input string.
CCS_pbeEncrypt Encrypt data in a single part using a password and password-based algorithm as

described in PKCS#12.
CCS_pbeDecrypt Decrypt data in a single part using a password and password-based algorithm as

described in PKCS#12.
CCS_pbeSign Generate signature for input data in a single part using a password and password-

based algorithm as described in PKCS#12.
CCS_pbeVerify Verify input data and its signature in a single part using a password and password-

based algorithm as described in PKCS#12.
CCS_pbeShroudPrivateKey Encrypt a PKCS#8 private key using a password and password-based algorithm as

described in PKCS#5 or PKCS#12.
CCS_pbeUnshroudPrivateKey Decrypt and load an encrypted PKCS#8 private key using the password and the

password-based algorithm as described in PKCS#12.
CCS_LoadPFXPrivateKeyWithPassword Loads zero or more private keys encrypted in a password from a PKCS#12 PFX

structure. See PKCS#12 document for details. Only PKCS#8 private keys are
supported.

CCS_LoadPFXCertificateWithPassword Loads zero or more X.509 certificates and public keys in those certificates from a
PKCS#12 PFX structure. The certificates either can be encrypted in a safe bag or
can be in plain form. See PKCS#12 and RFC 2459 documents for details.

CCS_DigestInit Initialize a message-digesting operation.
CCS_Digest Digest data in a single part.
CCS_DigestUpdate Continue a multi-part message-digesting operation.
CCS_DigestFinal Finish a multi-part message-digesting operation.
CCS_DigestRestart Reinitialize a message-digesting operation.
CCS_SignInit Initialize a signature operation.
CCS_Sign Sign data in a single part.
CCS_SignUpdate Continue a multi-part signature operation.
CCS_SignFinal Finish a multi-part signature operation.
CCS_SignRestart Reinitialize a signature operation.
CCS_SignRecoverInit Initialize a signature operation with data recovery.
CCS_SignRecover Sign data in a single part, with data recovery.
CCS_SignRecoverRestart Reinitialize a signature operation with data recovery.
CCS_VerifyInit Initialize a verification operation.
CCS_Verify Verify data in a single part.
CCS_VerifyUpdate Continue a multi-part verification operation.
CCS_VerifyFinal Finish a multi-part verification operation.
CCS_VerifyRestart Reinitialize a verification operation.
CCS_VerifyRecoverInit Initialize a signature verification operation with data recovery.
CCS_VerifyRecover Verify a signature on data in a single part, with data recovery.
CCS_VerifyRecoverRestart Reinitialize a verification operation with data recovery.
IKE_Sign Sign using an IKE Authentication Phase 1 authentication algorithm. The algorithms

and mechanisms are described in RFC 2409: The Internet Key Exchange.

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 15

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

IKE_Verify Verify using an IKE Authentication Phase 1 authentication algorithm. The
algorithms and mechanisms are described in RFC 2409: The Internet Key
Exchange.

CCS_GenerateKey Generate a secret key.
CCS_GenerateKeyPair Generate a public-key/private-key pair.
CCS_WrapKey Wrap (i.e. encrypt) a key for storage or distribution external to CCS.
CCS_UnwrapKey Unwrap (i.e. decrypt) a key.
CCS_InjectKey This is the raw (i.e., plaintext) key injection function that is used for legacy

applications with raw key access, and required to use NICI with their existing raw
keys.

CCS_ExtractKey Extract attributes of a key, including its value (NICI_A_KEY_VALUE) attribute.
CCS_LoadCertificate Load a public-key certificate, verify its signature and load the resulting public key.
CCS_LoadSelfSignedCertificate Load a self-signed public-key certificate, verify its signature and load the resulting

public key.
CCS_LoadUnverifiedCertificate Load a public-key certificate and the resulting public key without verifying the

certificate signature.
CCS_GenerateCertificate Create and sign a public-key certificate.
CCS_GenerateCertificateFromRequest Create and sign a public-key certificate whose public key is provided by a PKCS

#10 Certification Request.
CCS_GetLocalCertificate Return a public-key certificate or local portion of the certification path for one of the

NICI-predefined public keys.
CCS_GetCertificate Return a public-key certificate or complete certification path for one of the NICI-

predefined public keys.
CCS_GenerateKeyExchangeParameters This is the parameter generation stage of a key agreement algorithm.
CCS_KeyExchangePhase1 This is the phase 1 of a key exchange algorithm.
CCS_KeyExchangePhase2 This is the phase 2 of a key exchange algorithm.

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 16

NICI 2.7.1 FIPS 140-2 Level 2 Security Policy

NICI 2.7.1 Novell, Inc. ©2007 FIPS 140-2 Level 2 Security Policy
Version 1.5 03/23/2007 Page 17

	1 Introduction
	2 Security Policy
	2.1 Cryptographic Modules
	2.2 Module Interfaces
	2.2.1 Data Input/Output Interface
	2.2.2 Command/Status Interface

	2.3 Roles and Services
	2.3.1 User Role
	2.3.2 Crypto-Officer Role

	2.4 Finite State Machine Model
	2.5 Physical Security
	2.6 Cryptographic Key Management
	2.6.1 FIPS Approved Key Generation
	2.6.2 Key Distribution
	2.6.2.1 NICI Wrapped Keys
	2.6.2.2 NICI Session Keys
	2.6.2.3 Key Wrapping Attributes

	2.6.3 Key Entry and Output
	2.6.3.1 Password-Based Encryption (PBE) Wrapped Keys
	2.6.3.2 Key Injection and Extraction
	2.6.3.3 Protocol Support

	2.6.4 Key Storage
	2.6.4.1 Key Storage Keys

	2.6.5 Key Destruction

	2.7 Cryptographic Algorithms
	2.8 EMI/EMC
	2.9 Self-Tests
	2.9.1 Startup Self-Tests
	2.9.1.1 Cryptographic Algorithms Test
	2.9.1.2 Software/Firmware Test
	2.9.1.3 Critical Functions Test

	2.9.2 Conditional Self Tests
	2.9.2.1 Pair-Wise Consistency Tests (for public/private key pairs.)
	2.9.2.2 Continuous Random Number Test

	3 Installation Guidance
	3.1 Crypto-Officer Guidance
	3.1.1 FIPS 140-2 Level 2 Installation Requirements
	3.1.2 Evaluated Configuration

	3.2 User Guidance

	APPENDIX A – CCS API Definitions

